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Abstract. We consider the s-itate Potts model on the diamond hiemchical lattice for large s. 
We show that the generalized dimensions D, of the density of zeros supported by Ihe associated 
Julia set an given by D, = I - ( q  - l ) l~1 -~ /~ / /4 Iog2  t O(s-'). The infomtion dimension 
D I  equds 1 to all orden. 

1. Introduction 

The diamond hierarchical lattice i s  constructed recursively by replacing each bond at one 
step by a set of four bonds in a diamond shape as shown in figure 1. The beauty of this 
lattice is that renormalization (in the sense of statistical mechanics) may be carried out 
exactly. Using this fact, Denida er al [ I ]  show that the Yang-Lee zeros of the s-state Potts 
model on this lattice are dense in the Julia set of the rational map 

(1.1) 

When s is large the Julia set of this map is a Jordan circle, and, as observed by Hu and 
Lin [2], as s --t CO, it becomes larger and more circular. Figure 2 shows the Julia sets for 
s = 10, 20 and 30. We shall carry out an s-dependent scaling of this Julia set to make this 
apparent, and see that (in OUT new coordinates) in the limit s -+ CO the map becomes the 
simpler map 

z I-+ z 4 .  (1.2) 

We shall consider perturbations about this limit and derive an expression for the generalized 
dimensions D, of the density of zeros supported by the associated Julia set. The calculations 
are similar to those recently carried out for the degree-d complex map 

Z W Z d + C  (1.3) 

for small c. In [3] it is shown ha t  

+... (q - I)(q - 3)(CZC + E%) 
16logd + 8d.2 

(q - l ) lCl2 D p = l -  
4logd 

0305-447Om51205951+12$l9.50 @ 1995 IOP Publishing Ltd 5951 



5952 A H Osbaldestin 

Figure 1. The fint few steps in the construction of the diamond hierarchical lattice. 

-15 1 
Figure 2. The Julia sets of the rational map ( 1 . 1 )  with (from the inside) s = 10. 20 and 30. 

in which 8i.j is the Kronecker delta function 

I if i = j  
0 otherwise. 

This generalized an earlier result of Ruelle [4] for the Hausdorff dimension DO: 

D o = l + -  JCJZ + .. 
4 l o g d  

Ruelle's result was extended by Widom et a[ [5] who show 

3(c% f P c )  
& = I + -  +.... 16logd "" + 6d.Z 4logd 
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Independently, and by different means, Collet er al [61 have also derived the result 

For the Julia set associated with the diamond hierarchical lattice we show here that 
in [3], and indeed calculated the next order term. 

( B  - 
D q = I -  + O(s-'). 

4 log 2 

In particular, the Hausdorff dimension DO has expansion 1 + I ~ 1 - ~ / ~ / 4 l o g 2 +  O(s-l). The 
information dimension DI is equal to 1 to all orders in 11s. 

Unlike the result for the map (1.3) the term of order s-' cannot be argued away on the 
grounds of symmetry, despite the degree of the map (1.1) being four. 

Associated with the generalized dimensions by means of a Legendre transform is the 
f(a) singularity spectrum [7]. To the level of our series approximation we show that this 
has the parabolic form 

(a - 1)2log2 
iSi-2/3 

f(a) = 1 +(a - 1) - 

about s = 00. 

algebraic manipulations rapidly get more complicated. 
In principle, terms of successively higher order may be calculated. However, the 

2. The resealed map 

For s z the map (1.1) has an unstable fixed point at z = z* where 

2, = 1 + SI + sz 
with 

st = (r + &)I" and s2 = (r - 

where 

r = zs I and A = . ' ( i s  - 5) 27 ' 

To see this notice that z = 1 is always a fixed point of (1.1) enabling us to factorize the 
fixed-point equation and leave a cubic to solve. When s > this cubic has one real root 
which is an unstable fixed point. 

We now change coordinates to move this point to 1 by setting y = z/zI .  This gives the 
map 

>?. g(y) = z, (22.y + s  - 2  
1 z:yz+s-1 

The function g may be expanded as a series in powers of s-'j3 and, setting p = s - ' / ~ ,  we 
find 

g w  = Y4 + pcI (Y) + p z ~ z ( y )  + ~ 3 )  (2.1) 
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and 

where 

Cl(Y) = 2y2 + 2Y4 - 4Y5 

= -2yyy - 1 )  (2y* + Y + I )  

&(y) = I + $yZ - 8y3 + yy4  - yy5 + 12y6 

= s(y I - 1) (36y5 + 4y4 + 1 7 ~ ’  - 7yz - 3y - 3) . 
Generally C, is a polynomial of degree n + 4  with a zero at unity. It may be calculated by 
tedious but straightforward algebra. 

3. Conjugation 

When p = 0 the Julia set is the unit circle which we may parametrize in the form 
y(r) = exp(2nir). The map (1.2) is hen simply t H 4r mod 1. Equivalently, we may 
say that y satisfies the conjugacy equation 

g(Y(m = Y(4t). (3.1 ) 

For small p the map (2.1) is conjugate to the case p = 0 so that (3.1) still holds. y is 
analytic in the parameter p and so we may formally write 

y(t) = eWlr(l + puI(r )  + p2u2(t)  + o(~’)). (3.2) 

Following Widom et al [5 ] ,  the expansion (3.2) may be substituted into (3,1), where we set 

(3.3) 8 = eZnir 

to yield 

UI(4f) -4u1(t) = 8-4c1(8) (3.4) 

Uz(4.’) - 4 U z ( t )  = 6ui(t)’ + 8-’ci(8)u!(t)  + @Cz(S) 

and 

(3.5) 

(where the ‘prime’ denotes a derivative). Now the basic linear equation 

+(4t) - 4+(t) = emwilt (3.6) 

has a solution @ ( k t ) ,  where 

Hence equation (3.4) has the solution 

u l w  = 2 4 w )  + 2@(0) - 44(-t) 

(3.7) 

(3.8) 
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(We could, of course, write @(O) = -4.) 
For uz we find (solving for the three terms on the right-hand side of (3.5) separately) 

(3.9) U*@)  = U* (1) ( t )  + U p ( ? )  +U; ) ( ' )  

where 

(3.10) 

(3.11) 

(3.12) 

4. Multifractal analysis 

The multifractal analysis (see for instance [7]) of the 'strange' dynamics on a set such as a 
Julia set consists of partitioning of the set into balls such that ball j has length t, and an 
associated probability measure p, . One forms the partition function 

m, r )  = Cp,"iej (4.1) 
I 

and, fixing q and finding the supremum (infimum) of r for q P 1 (respectively q < 1) over 
all partitions, one finds that, in the limit maxt, + 0, r is of order unity for just one value 
of T. This defines the function r(q),  and the generalized dimensions D, are then defined 
by 

t ( q )  = (4 - OD,. (4.2) 

In particular, setting q = 0 we recover the Hausdorff dimension. Setting q = 1 (2) we have 
the information (respectively correlation) dimension. 

A Legendre transform of this function from variables q and T to LY and f gives the 
so-called f (LY) or multifractal spectrum: 

(4.3) 

Here, in the partition function (4.1), the lengths we use are the distances between 
successive members of Fn, the set of period points of g of period n: 

F,, =Fixg"=(y :g" (y )=y} .  
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In the case p = 0 these ace simply the points yj = exp(2xiti) where tj = j/(4" - I), 
j = 0. I ,  . . . ,4" - 2. When p is non-zero there is no closed-form expression for the 
members of F. and we rely on the series expansion (3.2) for small p obtained via the 
conjugacy (3.1). We have 

e, = I ~ ~ + ~  - yji = ly(t, + W )  - y(r,)i j = 0, I ,  . . . ,4" - 2 

where U = 1/(4" - 1). 
We assign equal weight to each length in the partition function, and because of this 

uniformity we calculate the function q ( r )  rather than its inverse r(q). Let N = 4" - 1 .  
Setting r = 1 and pj = 1/N in (4.1), we see that 

(4.4) 

where q,(r) is the nth approximation to the limiting function q(r) .  

5. The calculation 

In equation (4.4) we need to evaluate the sum ET.' e;'. From equation (3.2) we may 
write 

y(r+o)-$(r)=ePi ' (e2aiw- ~+(e '" '"u,( t+o)-ul( t ) )p  

+ (e""uz(t +U) - uz(t)) p2  + o ( ~ ~ ) )  (5.1 ) 
- e"il - (A + B ( 0 p  + c ( r )pz  + O(p3)) 

say, thereby defining the constant A and the functions E and C. 

I;* = ly(rj + w )  - y(tJI-' 

We have 

= ((y(tj + 0) - Y ( r j ) ) ( N j  + 0) - 7(c)))-r/z 

= (AA + (ASP + i ~ p )  + ( A E P ~  + ~ B p p  -I- Acpz)  + 0 ( ~ 3 ) ) ) - ~ / '  

r ( A l p  + A E p )  r + E S p p  + ACpz) - -  
A A  2 A i  

Following Widom er nl [5] again it is convenient to define the average 

(5.2) 
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A fundamental property of this average is 
1 m - 0  (mod N) 
0 m +O(mod N) 

= [ (5.3) 

Note also that this average is linear and that 

(GO + w)),  = (G(O), and ( e ( O ) n  =mn. (5.4) 
Thus to second order we have 

Now from (5.1) A = ekiO - 1, and, recaUing that o = l j ( 4 "  - 1) = 1/N, so 

A A  = (ekio - l)(e-kriO - 1) = z(1 - cos2nw) 
4x2 - _  - + O ( l / N 4 ) .  
NZ 

Hence 

l o g ( A ~ ) = - 2 1 0 g N + O ( l )  N + m .  (5.6) 
In  the appendix we show 

and 

+0(1) as N + m .  ( B E ) ,  IogN 
A A  log2 

-=__ 

Hence, using (5.6)-(5.8) and the immediate fact that ( I ) ,  = 1, our expansion to second 
order (5.5) becomes 

+ O(1,)) 
1 r2 log N = - (log (N(AA)-'/') + log 1 + p p -  

log N ( 410g2 

= - (log N - 5 log(AA)) + 

r2 

1 1 - tZ log N 
log N log N 

= + 1 + P P G  + 0 ( 1 / l o g N )  
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and thus 

Inverting this series gives 

and hence by (4.2) 

+ 0(p3) 
1 - (4 - 1) Dq = ----s(q) = 1 - p p -  

q - l  4 log 2 

For the multifractal spectrum we have (by equation (4.3)) 

and hence to second order 

*log2 f ( a )  = qcu - T = 1 + (a - 1) - (a - 1) - 
P P  

Recalling that p = s-' I3 we get the results as stated in the introduction. 

Appendix A. {B)n, (B2), and (C) ,  

We shall use the notation 

e ( k )  = 

SO that e ( p ) e ( q )  = e(P + q) ,  J P  = e ( - p )  (see equation (3.3)), and (referring to (3.6) and 
(3.7)) the linear equation 

r/1(40 - 4 w  = 4) 
has solution @(kt ) ,  where 

m 
@(I) = -$ 4444 ' ) .  

k 0  

Equation (5.3) may be written 

1 

= [ 0 
m = 0 (mod 4" - 1) 
m f 0 (mod 4" - 1). 

From equation (5.1) 
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Now from (3.8) 

m 

= -4 c 4 - '  ((e(2.4e))n + (e(O)), - 2(e(-4e)),) 
e=o 

Hence by (AI), since 2.4' f 0 (mod 4" - 1) and -4e f 0 (mod 4" - I ) ,  and clearly 
(e(O)) ,  = 1, we have 

m 
( U l ( f ) ) n  = -; E44 = 2@(0) = - 3 .  2 

e=o 

(To deduce that 2.4' + 0 (mod 4" - 1) and -4( f 0 (mod 4" - 1) it suflices to note that 
2.4' 2 (mod 3) and -4' 3 2 (mod 3).) By equation (5.4) and the fact that A = y - 1 
we immediately see that 

(4" - 2 - _  
A 3 

The evaluation of (E ' ) ,  is similar. From equation (5.1), E 2  = yZu l ( r  + w ) ~ + u I ( ~ ) '  - 
2 y u l  (t + w)uI  (f) .  Note that 

When we form ( u I ( ~  + o ) u I ( ~ ) ) ~  as above we see that there is only one non-zero term (that 
given by 40)) and we easily deduce that ( q ( t  +w)u,  (I)), = a. (To see that all other terms 
vanish it suffices to consider the arguments modulo 3.) The other two terms in ( E z ) ,  are 
the same and we immediately deduce that 

( B Z L  4 
A2 9 

- = - .  

For (C),  we have from (5.1) 
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From equation (3.11) 

m 

(ui2)(t)),, = -214-'((@((2.4' + w)), t 2($(2.4%), - 5(@((2.4' - 1)~)). 
e=@ 
t (@(2t)), t 2(@(0)). - 5($(-tNn 

-2(4((-4' + 2)t))n -4(@(-4't))n + 10(@((-4' - I)!))") . 

Once more, each term here is zero except (@(0))n, hence (uf)(r)),, = $ CEo4- '  = !5 9 '  

looking at (3.10) we see that once again every average will be zero except 
that involving @(O). (There will never be the necessary pure differences of powers of 4.) 
We have 

For 

m m 
( u f ) ( r ) ) ,  = f 4-'@m)(4(0)), -$ 4-((+m) = -S 9 

h = O  t.m=O 

Combining these three results (using equation (5.4) and the fact that A = y - 1) we deduce 
that 

Appendix B. (B3), 

We have 

( B E ) ,  = ( U l ( f  +m)iI (2 +ON. - y(u l ( r  t m ) ~ ( t ) ) .  - y(ri l ( t  + w),u(t ) ) ,  t (u,(r)cl(r))n . 

For the calculation it will suffice to consider (111 (r + o)il (t))n, 

(ul( t  + o)ril(t)). = f 
m 

4-"tm'((e-"i4L2We(2.4e) + e(0) - 2e"i4'0e(-4L)) 
e.m=o 

x (e(-2.4m) + e(0) - 2e(4"'))), 
m 

e.m=O 
= f 4-"L+m)(e-"i4'2y((~(2.4f - 2.4'")), t (e(2.4'))" - 2(e(2.4' t 4")),) 

t (e(-2.4m)), t (e(O)), -2(e(4m))n 
- 2 eki4 ' r  ((e(-4' - 2.4?)" + (4-4I))" - Z(d-4' t4'"))")). 

Unlike the previous averages, we now have some non-trivial non-zero terms. Using the fact 
that 4' - 4m = 0 (mod4" - I )  if and only if = m (modn) we have 
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Defining the function h by 

m 
h ( x )  = 4-2me-b"" 

m=O 

we may write 

Using equation (5.4), and setting w = 0 when appropriate, we deduce that 

(Si), = $( I  - 1 (Y + Y ) )  

Now we wish to know the asymptotics of ( B E ) ,  for large n .  Recalling that UJ = 
1/(4" - 1) = 1/N,  we have 

2 1 - ( y  + p) = 1 - ~ 0 ~ 2 n w  = O ( l / N  ) 2 

and 

(Z)  = N+2 = 1 + 0 ( 1 / N ) .  
N 

Noting that = 4 C,"=04-", we have, after a little manipulation, 

Y 
3 4  4 
_- -  (h(2w) + 4h(-w)) - 1 (h(-Zo) + 4h(w)) 

m __ 
= c 4 - " ( 6 ( 1  -cos(2nw(2.4"'- 1)) +2(1 -c0s(2nw(4~ + 1))). 

m=0 

To understand the behaviour of this sum we split it into a finite part and an infinite part at 
some point to be specified later. Write 

say. Now 

m 
l C z l < Z z 4 -  2 m I  ( ~ + 2 ) = 9 4 - ' ~ .  

l F M  

Expanding the cosine series and gathering together terms we get 

2 -M C1 = 8 d M 0 ~  -t O(O 4 ) . 
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We therefore choose M so that o = 4C', i.e. so that M = log Nl log4,  and see 

t O ( I / N ' )  
SIC' log N 
N 2  log4 

= 

and 

1x21 = O ( l / N 2 ) .  

Hence 

+ O ( l / N * )  
83r210g N 
N 2  log4 

( B E ) ,  = 

and so, recalling the fact that A A  = 4n2/NZ + O( I j N " ) ,  
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